Cochlear Implantation in Patients with Special Situation

Hisashi Sugimoto¹, Makoto Ito², Miyako Hatano¹, Hiroki Hasegawa¹, Masao Noda¹, Tomokazu Yoshizaki¹*

ABSTRACT

Objectives: We have been using the "Subtotal petrosectomy" or "Canal wall down mastoidectomy" technique for the cochlear implantation of difficult cases. We also added the "Blind sac closure of external auditory canal (EAC)" and "Middle ear and mastoid Obliteration by abdominal fat" technique as necessary.

Methods: Retrospective analysis of seven special cases of cochlear implantation was carried out. The detailed breakdown of the cases is as follows: Post radical mastoidectomy -- 2 cases, Adhesive otitis media -- 1 case, Eosinophilic otitis media -- 2 cases, Temporal bone malformation -- 2 cases. Complications, hearing threshold results, word recognition, and bleeding were analyzed.

Results: For one of the cases of Post radical mastoidectomy, the patient suffered from a breakdown of the EAC closure. The hearing threshold following the procedures ranged from 25 to 35 dB with an average of 30.3dB. The word recognition results were 0 to 96% with an average of 60% and sentence recognition results ranged from 0 to 100% with an average of 62%. The volume of blood loss ranged between less than 5 mL and 170 mL.

Conclusions: The combination of these techniques has potential to be effective for the cochlear implantation of such difficult cases.

KEYWORDS: Petrosectomy, Cochlear implantation, Auditory canal, Post radical mastoidectomy

INTRODUCTION

Patients with profound hearing loss are able to acquire the ability to hear by receiving an operation to emplace a cochlear implant, and this result in a remarkable improvement in their quality of life. As of this time, many patients have enjoyed the benefits of this procedure. For patients in which the middle and inner ear present a normal form and in which there is no pathological change to the temporal bone, the classical facial recess technique is usually used with extremely few resultant complications. Previous studies of the classic technique report major complication rates of between 3.0 and 13.7% [1-4]. On the other hand, there are quite a few difficult cases for which classical facial recess technique for cochlear implant cannot be employed. Fisch et al. proposed subtotal petrosectomy in 1988, and five years after that Parnes et al. employed this approach for the first time in a difficult cochlear implant case. This procedure involved a closure of the external auditory canal (EAC) and the Eustachian tube and obliteration of the surgical cavity. Following this case, this procedure became the standard cochlear implant method used for difficult cases, and this in turn has led to debate over the usefulness and safety of the procedure [5-14]. However, since the total number of cases is small, the validity and safety cannot be irrefutably established. Thus, it is extremely important to ascertain the as of yet hypothetical usefulness and safety for patients undergoing such special cases of cochlear implant procedures. In this report we present our experiences with seven such special cases of cochlear implants. In this report we wish to contribute further to the investigation about the safety and suitability so that even if only by a small amount more patients with difficult cases can enjoy the benefit of cochlear implant.

MATERIAL AND METHODS

PATIENTS

We did a retrospective analysis of seven special cases of cochlear implantation carried out in the Department of Otorhinolaryngology at the Kanazawa University Hospital between 2012 and 2016. The detailed breakdown of the cases is as follows: Post radical mastoidectomy -- 2 cases, Adhesive otitis media -- 1 case, Eosinophilic otitis media -- 2 cases, Temporal bone malformation -- 2 cases (Table 1). For the two cases of eosinophilic otitis media subtotal petrosectomy, cochlear implantation, and obliteration of the mastoid using abdominal fat was carried out (Fig. 1).
Table 1. Summary of seven special cases.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Sex</th>
<th>Side</th>
<th>Etiology</th>
<th>Operative procedure</th>
<th>Complications</th>
<th>Bleeding</th>
<th>Implant</th>
<th>Hearing threshold before CI</th>
<th>Hearing threshold after CI</th>
<th>Speech preception (CI2004)</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>69</td>
<td>F</td>
<td>Lt</td>
<td>Radical cavity</td>
<td>Simple suture of EAC Canal wall mastoidectomy closure of the eustachian tube</td>
<td>Suture failure of EAC</td>
<td>100 ml</td>
<td>Cochlear CI24</td>
<td>0/22</td>
<td>105dB</td>
<td>30dB</td>
<td>Word 48%</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>M</td>
<td>Rt</td>
<td>Radical cavity</td>
<td>Blind sac closure to EAC Canal wall mastoidectomy closure of the eustachian tube</td>
<td>No</td>
<td><5 ml</td>
<td>Cochlear CI24</td>
<td>0/22</td>
<td>105dB</td>
<td>28dB</td>
<td>Word 60%</td>
</tr>
<tr>
<td>3</td>
<td>79</td>
<td>M</td>
<td>Lt</td>
<td>Atelectasis</td>
<td>Subtotal petrosectomy closure of the external auditory canal</td>
<td>No</td>
<td><5 ml</td>
<td>Cochlear CI24</td>
<td>0/22</td>
<td>103.8dB</td>
<td>25dB</td>
<td>Word 64%</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>M</td>
<td>Lt</td>
<td>Eosinophilic otitis media</td>
<td>Subtotal petrosectomy closure of the external auditory canal</td>
<td>No</td>
<td>170 ml</td>
<td>Cochlear CI24</td>
<td>0/22</td>
<td>105dB</td>
<td>30dB</td>
<td>Word 96%</td>
</tr>
<tr>
<td>5</td>
<td>71</td>
<td>M</td>
<td>Rt</td>
<td>Eosinophilic otitis media</td>
<td>Subtotal petrosectomy closure of the external auditory canal</td>
<td>No</td>
<td>50 ml</td>
<td>Cochlear CI24</td>
<td>0/22</td>
<td>102.5dB</td>
<td>34dB</td>
<td>Word 60%</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>M</td>
<td>Lt</td>
<td>Inner ear Malformation</td>
<td>Blind sac closure of EAC Canal wall mastoidectomy</td>
<td>No</td>
<td>50 ml</td>
<td>Cochlear CI24</td>
<td>0/22</td>
<td>105dB</td>
<td>35dB</td>
<td>Word 0%</td>
</tr>
<tr>
<td>7</td>
<td>41</td>
<td>M</td>
<td>Rt</td>
<td>Inner ear Malformation</td>
<td>Blind sac closure of EAC Canal wall mastoidectomy</td>
<td>No</td>
<td><5 ml</td>
<td>Cochlear CI24</td>
<td>0/22</td>
<td>97.5dB</td>
<td>30dB</td>
<td>Word 2%</td>
</tr>
</tbody>
</table>

For one of the two cases of post radical mastoidectomy closure of the external auditory canal using blind sac closure, cochlear implantation, and mastoid obliteration using abdominal fat were carried out (Fig. 2). For the other case of Post radical mastoidectomy, the external auditory canal was closed, but blind sac closure was not used. Mastoid obliteration was also not performed. For a case of Adhesive otitis media, canal wall down mastoidectomy, cochlear implantation, and mastoid obliteration using abdominal fat were carried out. For the two cases of Temporal bone malformation, closure of the external auditory canal using blind sac closure, canal wall down mastoidectomy and cochlear implantation were carried...
out. Obliteration of the mastoid was not carried out. Complications, hearing threshold results, word recognition, and bleeding were the four items analyzed in these seven cases. Permission for this retrospective study was obtained from the Kanazawa University Hospital, the local Ethics Committee approved the study protocol. Informed written consent was obtained from all patients.

RESULTS
The average period of observation was 36.4 months. Six of the patients were male, and one was female. Patient age ranged from nine to 79 years with an average age of 57.9. All of the surgical techniques employed in each case were carried out as one combined operation. For all of the cases cochlear implantation was performed using Cochlear CI24 with zero electrodes outside of the cochlear. For one of the cases of Post radical mastoidectomy the patient suffered a breakdown of the EAC closure. In this case ear discharge continued for three months following the procedure, but this complication disappeared with the EAC finally closing again naturally. In this case blind sac closure was not performed and the middle ear and the mastoid were not obliterated. There were no complications in any of the cases.

Hearing threshold results following the procedures ranged from 25 to 35dB with an average of 30.3dB. Blood transfusion was not required in any of the cases.

DISCUSSION
We have used the "Subtotal petrosectomy" or "Canal wall down mastoidectomy" technique to approach for kinds of difficult cases related to cochlear implantation. A detailed discussion of the cochlear implant technique as it was applied in each of these four clinical states follows.

EARS AFTER RADICAL MASTOIDECTOMY
Of the two cases of ears following radical mastoidectomy in this study, there was a suture failure of the EAC in the first case. In this case we didn’t use the blind sac closure technique when suturing the EAC. Furthermore, obliteration of the mastoid was not carried out. Since the diameter of the EAC following radical mastoidectomy is larger as compared to that of a normal EAC, a simple suturing of the EAC may lead to imperfect closure. Fisch considered the EAC suturing using blind sac closure to be a safe, effective procedure [15]. It is also an advisable application when carrying out cochlear implantations in radical cavities. In the second case, the lateral semicircular canal in the right ear had been destroyed in a previous operation. Prior to this operation a caloric test was conducted and CP (canal paresis) was pointed out. Due to this and in order to preserve vestibular function, an operation was carried out on the previously destroyed lateral semicircular canal in the right ear.

The period of hearing loss in the right ear had been long, but following the operation an improvement in the hearing level of up to 25dB was attained. The canal paresis on the right side caused a remarkable reduction in the patient’s QOL. Therefore, despite the long period of hearing loss, it is recommended to proceed with caution.

ADHESIVE OTITIS MEDIA
Xenellis et al. reported about cochlear implantations for four patients who were suffering from adhesive otitis media. They concluded that Blind-sac closure of the external auditory canal without obliteration is a rather safe surgical procedure in cases with atelectasis, and a 2-stage procedure may not always be necessary and indeed might best be limited to those patients who have active inflammatory disease at the time of the primary procedure [16]. The cases that we dealt with in this study had no inflammation, so the operations were carried out as single, comprehensive procedures. There were no complications in these cases. The difference between our cases and those reported by Xenellis et al. was as concerns the inclusion of Mastoid obliteration. We perform mastoid obliteration to prevent hemorrhage effusion and prevent infection in the post-operative dead space. However, we believe that the most important purpose of mastoid obliteration is to counter post-operative spinal fluid leakage. It is not necessarily always required to take these precautions in cases of adhesive otitis media in which these risks are not present. In order to determine which is
best, more reports from further cases are required. In the cases related to this study a caloric test was carried out, the absence of canal paresis was confirmed, and the operative side was selected. Similar to the cases of mastoidectomy, we feel that consideration of the vestibular function in cases of adhesive otitis media is important for selecting the operative side.

EOSINOPHILIC OTITIS MEDIA

In this study there were two cases of eosinophilic otitis media for which cochlear implantation was performed. The surgical procedure was a subtotal petrosectomy. The concepts of the surgery consist of the following two points: (i) Removal of mucosa from the middle ear and the mastoid cavity as completely as possible in order to remove the theater of eosinophilic infiltration; (ii) Closure of the Eustachian tube and the external auditory canal in order to prevent leaching of foreign substances and entry of stimuli which are the cause of eosinophilic inflammations. There were no complications or recurrent inflammation following surgery in the cases of both patients. Following the procedure, the hearing threshold results of the two patients were 30dB and 34dB [17]. This is the first discussion focusing on cochlear implantations for cases of eosinophilic otitis media. To further confirm the efficacy and safety of our surgical concept, we need to administer this treatment concept for a larger number of cases in a future study.

TEMPORAL BONE MALFORMATION

As for the cases of temporal bone malformation, because the anatomical landmark cannot be trusted, the identification of the place to open the cochlea is problematic. Furthermore, in cases of temporal bone malformation it has been reported that carrying out the cochleostomy can result in gushers. Therefore, for temporal bone malformation cases we feel it is critical to ensure that there is a good operative field of view and ample working space. Canal wall down mastoidectomy technique resolves these two problems. Mistakes in the location for opening the cochlea are reduced. What's more, the measures for dealing with gushers become much easier.

In the first temporal bone malformation case in this study, the first operation employed was a classical facial recess technique. However, due to a traveling abnormality of the facial nerve and a deformity in the inner ear, we couldn't identify the location to open the cochlea. In the second operation a subtotal petrosectomy was employed resulting in a good operative field of view. Thus, we could open the cochlea. Therefore, we think that in cases of temporal bone malformation this canal wall down technique is extremely useful for cochlear implantation.

SUBTOTAL PTEROSECTOMY AND CANAL WALL DOWN MASTOIDECTOMY

Ensuring a good operative field and ample working space are two common, important points when performing cochlear implantation for special cases. Use of subtotal petrosectomy and canal wall down mastoidectomy can overcome difficulties related to these two points. Also, closure of the Eustachian tube and the EAC can isolate them from the exterior preventing operation related infection [18]. Thus we feel that for special cases this is a useful procedure.

STAGED OPERATION

Linder et al. recommended a staged operation for cases with the following four conditions: 1. Suppurative and continuously draining otitis media, 2. Previous tympanomastoid surgeries with “unstable” disease, 3. Extended cholesteatomas, and 4. Previously irradiated temporal bone [14]. We regard this strategy as appropriate. For the cases in this study none of these four conditions applied. Thus, a single operation was selected. There were no severe complications.

MASTOID OBLITERATION

Whether or not to employ mastoid obliteration is an essential topic that must be discussed. In cases where mastoid obliteration is employed, the choice of the obliterating materials is also an important issue. We feel that it is necessary to fill the mastoid space in cases for which post-operative inflammation is possible. We especially feel that in cases in which dura mater is exposed or in which there is CSF leakage, filling the mastoid space is necessary. Following radical mastoidectomy, eosinophilic otitis media, and adhesive otitis media, amongst other conditions, it is favorable to fill the mastoid space to prevent inflammation caused by exuded liquid or blood. On the other hand, in cases such as temporal bone malformation in which there has been no inflammation and the dura mater or CSF leakage is not occurring, filling the mastoid space is not necessary. Previous reports indicate that for blood flow in the temporal muscle, abdominal fat is the filling material used. Hellingman suggests that the most suitable material to obliterate the cavity appears to be abdominal fat because of its resistance to necrosis and easy removal if cochlear implantation is performed later. On the other hand, Fisch et al. propose that, after subtotal petrosectomy, if dura mater exposure or CSF leakage are involved and there is inflammation, then the temporal muscle with blood flow or the sternocleidomastoid muscle should be adopted [15]. For our cases in this study there was no exposure of dura mater nor was there any CSF leakage involved, so abdominal fat was adopted as the filling material, and there were no post-operative complications.

VESTIBULAR FUNCTION

When selecting on which side to perform the procedure, evaluation of the vestibular function is essential. Especially in cases of Radical cavity or ears following inner ear procedures, it is necessary to administer the caloric test and confirm the presence or absence of paralysis of the semicircular canal. Bilateral loss of vestibular function is a complication that must be avoided, and we believe this takes priority over post-operative hearing acquisition. We think that compared to more mainstream cases, cochlear implantation following radical mastoidectomies and other special cases can result in a higher risk of deterioration of vestibular function, so as much as possible it is necessary to make pre-operative evaluations.

CONCLUSION

We have performed cochlear implantations in cases of Radical cavity,

Successful Cochlear Implantation under Local Anesthesia and Sedation: A case Report

Barbara Stanek, Bernhard Gradl, Astrid Magele, Georg Mathias Sprinzl*

ABSTRACT
With the increasing life expectancy, also the number of patients suffering from age-related severe to profound hearing loss is rising. In the past Cochlear Implantation in elderly was performed with low expectations in improved hearing performance and handled as a high risk intervention due to age related health challenges. Latest studies showed that Cochlear Implantation is a safe procedure in elderly patients and that this group of patients is able to benefit regarding speech perception and life quality. Usually hearing device implantations are performed under general anesthesia, which may pose a restrictive factor for surgery, especially in elderly patients presenting with comorbidities. The here presented case describes how anesthesia may be circumvented by performing Cochlear Implantation under local anesthesia and sedation. A 72-year old man presented himself with acute severe to profound sensorineural hearing loss in his right ear, due to herpes zoster oticus. In addition he suffered from pre-existing deafness in his left ear. No improvement in hearing and no benefit after trialing a conventional hearing aid for a period of six months were noted. Further examinations revealed the patient to be a suitable candidate for Cochlear Implantation in his right ear. Due to significant comorbidities, general anesthesia was contraindicated. Thus surgery was performed under local anesthesia and sedation. The procedure was successfully performed and no adverse events or surgical complications occurred. Cochlear Implantation under local anesthesia and sedation may serve as a valuable option for patients not suitable for general anesthesia.

KEYWORDS: Cochlear implantation, Elderly patients, Local anesthesia

INTRODUCTION
Hearing loss is one of the most common sensory impairments with the elderly population being predominantly affected. Depending on the degree of hearing loss, many candidates can be successfully fitted with hearing aids. Cochlear Implants represent the current treatment for patients of all ages affected by profound sensorineural hearing loss in one or both ears. For individuals with this type of hearing loss, hearing aids provide little or no benefit. Thus surgery has been performed for more than 30 years featuring a low rate of complications [1]. Due to the increasing life expectancy, hearing rehabilitation of elderly patients has progressively considered in the recent years. Demographic data reports that in industrialized countries the proportion of people over the age of 65 years will increase from 28% in 2015 to 40% in 2035 [2]. Age-related processes within the Cochlear cause damage of the inner hair cells followed by a low to moderate hearing loss which may progress into severe hearing loss up to deafness. In cases where conventional hearing aids do not achieve any improvement in hearing, Cochlear Implantation poses a feasible and safe treatment option. Unfortunately in many elderly patients the decision of hearing rehabilitation surgery is often handled reluctantly as the risk of surgery is deliberated against the benefits of hearing gain. Additional reasons against a Cochlear Implantation are possible difficulties with the handling of the audio processor as well as morbidities prohibiting general anesthesia. This paper describes a case in which Cochlear Implantation was performed under local anesthesia and sedation in a 72 year old male.

CASE REPORT
A 72-year-old male with herpes zoster oticus with a vestibulocochlear lesion and accompanying acute profound sensorineural hearing loss and a neuropathy vestibularis in the right ear presented to our clinic. The patient suffered from a right sided facial palsy occurring a few days after his visit. The left ear was diagnosed 20 years ago with chronic recidivating otorrhea in terms of otitis media chronica simplex resulting in a deaf left ear. Further anesthesia hindering co-morbidities were coronary heart disease, left ventricular dysfunction, COPD (chronic obstructive pulmonary disease), diabetes mellitus, essential hypertension and dyslipidemia. The audiogram showed a decline in bone conduction thresholds on the right side from 50dB HL at 250Hz to 80dB HL at 3000Hz with an air-bone gap of 10dB. On the left side the air- and bone conduction
threshold were 90dB HL to 110dB HL (Fig. 1). Monosyllabic intelligibility tests scored 10% at 95dB and 55% at 110dB on his right ear and 0% at 110dB on his left ear (Fig. 2). Given the severity of his hearing loss, communication of the patient was only possible in written form. At that time the patient was already suffering from social exclusion and incipient depression. The patient was administered to hospital and received intravenously valaciclovir and corticosteroids. Despite of six months of treatment therapy no improvement in hearing on his right ear was observed. The patient was provided with a behind-the-ear hearing aid, which did not generate subjective nor audiological benefit. The recognition of speech was 0% at 65dB and 10% at 80dB with its best possible setting. Thereupon the evaluation regarding Cochlear Implantation started: Computed Tomography of the petrous bone conducted for previous diagnosis purposes, further audiological examinations, Magnetic Resonance Tomography and a Vestibulometry were initiated. The patient met the indication criteria for Cochlear Implantation. Pre-operative multidisciplinary examinations (echocardiography, pulmonary function, ECG, internal survey) revealed that general anesthesia was too risky due to afore mentioned comorbidities. After discussing the options with the patient, it was decided to perform Cochlear Implantation under local anesthesia.

SURGICAL RECORD
A Cochlear SYNCHRONY Standard Electrode from MED-EL (Innsbruck, Austria) was implanted. Due to the local anesthesia no facial monitoring was performed. The local anesthesia protocol included at first 5 ml Xylonest® 1% with epinephrine 1:200.000 injection solution submitted into the retro auricular region. A retro auricular cut, following a mastoidectomy and posterior tympanotomy with a bony implant bed were performed. Cochleostomy approach for electrode insertion was conducted due to the round window anatomy. ART (auditory nerve response telemetry) and impedance measurements were undertaken intra-operatively without abnormal occurrences. The surgical intervention lasted 60 minutes and no complications were reported. No pain of the patient himself was indicated during the intervention.

ANESTHESIA RECORD
The surgery was executed with an anesthesiology in standby. Pre-operatively the patient received Midazolam. Intra-operative monitoring included an ECG, a pulse oximetry as well as constant blood pressure measurements. Oxygen (4 L/
SUCCESSFUL COCHLEAR IMPLANTATION UNDER LOCAL
ANESTHESIA AND SEDATION: A CASE REPORT

...min) was delivered through an oronasal mask. To initiate and maintain a mild sedation, the patient received in total 0.05 mg Fentanyl and 10 mg Ketanest administered in a small bolus based on patients’ comfort. Furthermore 4 mg of Dexamethasone and 4 mg of Zofran were given as a prophylactic antiemetic.

RESULTS

Post-operatively no pain, nausea or vomiting occurred. The patient reported dizziness which was already present pre-operatively. For infection prevention intravenous antibiotics were applied for five days. The patient was released on the fifth post-operative day. Following implant activation, on month after surgery, verbal communication was immediately possible, which was not feasible pre-operatively. CI-aided free field measurements on the right ear revealed 45dB HL at 250Hz, 30dB at 1.000Hz, 35dB HL at 2.000Hz and 35dB at 4.000Hz (Fig. 3). The Freiburg monosyllables test revealed 10% word recognition scores at 65dB and 40% at 80dB in the CI aided condition after one month. The Freiburg number test resulted in 100% understanding at 65dB (Fig. 4). The three months follow-up free field measurements remained constant. The monosyllabic intelligibility of the patient improved about 35% at 65dB and 55% at 80dB (Fig. 5). The satisfaction and benefit of the patient remained high and he stated to undergo surgery under local anesthesia again.

DISCUSSION

Due to the increasing life expectancy typical diseases related to elderly people are undoubtedly rising as well. For instance the WHO estimates disabling hearing loss in persons above 65 years of age in over 30% of the population. Understandably, due to this demographic tendency, hearing impaired patients as well as the public’s interest on possible treatment options is ever increasing. At the St. Pölten University Medical Center the average implantation age raised from 48 years in 2014 to 51 years in 2017. Studies revealed that untreated hearing loss poses a risk factor for the development of dementia, cognitive decline, anxiety and depression [3-5]. The here presented case reported of such depressive moods due to the distinctive discomfort and isolation already shortly after losing his hearing. Unfortunately, Cochlear Implantation in elderly is often associated with increased operative risks and therefore other, less satisfying, therapies are opted for. Coelho et al. and Büchsenschütz et al. proved that Cochlear Implantation is a safe procedure in healthy patients regardless of age [6,7] also vertigo and wound healing difficulties were not reported more frequently in the elderly population [8]. Importantly,
Fig 5. Speech Audiometry 3 months post-operative [Numbers (Z) and Monosyllables (E)].

CONCLUSION

Cochlear implantation surgery proved to be a good and viable option for hearing rehabilitation in the elderly population. Profoundly deaf patients may still be implanted under local anesthesia without generating additional health issues caused by present comorbidities.

SUMMARY

- Case report of a 72-year-old man.
- Patient suffered acute severe to profound sensorineural hearing loss (right ear) and pre-existing deafness (left ear).
- Patient reported social isolation followed by depression due to hearing impairment.
- The patient unsuccessfully trialed conventional hearing aids for 6 months.
- Patient was indicated for Cochlear Implantation (right ear) but significant comorbidities contraindicated surgery under general anesthesia.
- Therefore surgery was performed under local anesthesia and sedation.
- Intervention lasted 60 minutes and procedure was successfully performed and no adverse events or surgical complications occurred.
- Hearing rehabilitation was successful one month post-operative and improved further. Communication immediately possible again after activation.
- The patient reported improved hearing benefit and Quality of Life.

REFERENCES

SUCCESSFUL COCHLEAR IMPLANTATION UNDER LOCAL ANESTHESIA AND SEDATION: A CASE REPORT

